PORTO-
FREI

Steinwendner, J: Neuronale Netze programmieren mit Python

Der Einstieg in die Künstliche Intelligenz. Mit KI-Lernumgebung, Python-Crashkurs, Keras und TensorFlow 2

von Steinwendner, Joachim / Schwaiger, Roland   (Autor)

Neuronale Netze stehen im Mittelpunkt, wenn es um Künstliche Intelligenz und Machine Learning geht. Sie revolutionieren Bild- und Spracherkennung, Spiele-KIs und vieles mehr. Zum Glück lassen sich die genialen Ideen dahinter einfach erklären. Um sie zu verstehen und einzusetzen, programmieren Sie verschiedene Netztypen selbst nach! Und zwar in Python, der Hauptsprache der KI-Welt. Sie werden sich dabei mit Mathematik und Programmierung befassen, brauchen aber keine konkreten Vorkenntnisse. Aus dem Inhalt: * Die Grundidee hinter Neuronalen Netzen * Ein einfaches Neuronales Netz aufbauen * Neuronale Netze trainieren * Überwachtes und unüberwachtes Lernen * Einführung in TensorFlow * Kompaktkurs Python * Wichtige mathematische Grundlagen * Reinforcement Learning * Verschiedene Netzarten und ihre Anwendungsbereiche * Back Propagation * Deep Learning * Werkzeuge für Data Scientists Die Fachpresse zur Vorauflage: LINUX MAGAZIN: »Eine rundum gelungene, recht gründliche und gut verständliche Einführung ins maschinelle Lernen mit neuronalen Netzen.« iX - Magazin für professionelle Informationstechnik: »Entwickler bekommen hier eine Menge Theorie inklusive der mathematischen Grundlagen serviert (...). «

Buch (Kartoniert)

EUR 29,90

Alle Preisangaben inkl. MwSt.

Auch verfügbar als:

  nicht lieferbar.
(vergriffen - Erscheinungstermin einer Neuauflage unbestimmt.)

Versandkostenfrei*

Dieser Artikel kann nicht bestellt werden.
 

Produktbeschreibung

Neuronale Netze stehen im Mittelpunkt, wenn es um Künstliche Intelligenz und Machine Learning geht. Sie revolutionieren Bild- und Spracherkennung, Spiele-KIs und vieles mehr. Zum Glück lassen sich die genialen Ideen dahinter einfach erklären. Um sie zu verstehen und einzusetzen, programmieren Sie verschiedene Netztypen selbst nach! Und zwar in Python, der Hauptsprache der KI-Welt. Sie werden sich dabei mit Mathematik und Programmierung befassen, brauchen aber keine konkreten Vorkenntnisse.

Aus dem Inhalt:

* Die Grundidee hinter Neuronalen Netzen

* Ein einfaches Neuronales Netz aufbauen

* Neuronale Netze trainieren

* Überwachtes und unüberwachtes Lernen

* Einführung in TensorFlow

* Kompaktkurs Python

* Wichtige mathematische Grundlagen

* Reinforcement Learning

* Verschiedene Netzarten und ihre Anwendungsbereiche

* Back Propagation

* Deep Learning

* Werkzeuge für Data Scientists

Die Fachpresse zur Vorauflage:

LINUX MAGAZIN: »Eine rundum gelungene, recht gründliche und gut verständliche Einführung ins maschinelle Lernen mit neuronalen Netzen.«

iX - Magazin für professionelle Informationstechnik: »Entwickler bekommen hier eine Menge Theorie inklusive der mathematischen Grundlagen serviert (...). « 

Inhaltsverzeichnis

Vorwort zur 2. Auflage ... 13
Materialien zum Buch ... 14
Vorwort ... 15
1. Einleitung ... 19

1.1 ... Wozu neuronale Netze? ... 19
1.2 ... Über dieses Buch ... 20
1.3 ... Der Inhalt kompakt ... 22
1.4 ... Ist diese Biene eine Königin? ... 25
1.5 ... Ein künstliches neuronales Netz für den Bienenstaat ... 26
1.6 ... Von der Biologie zum künstlichen Neuron ... 31
1.7 ... Einordnung und der Rest ... 36
1.8 ... Zusammenfassung ... 43
1.9 ... Referenzen ... 44

Teil I. Up and running ... 45
2. Das minimale Starterkit für die Entwicklung von neuronalen Netzen mit
Python ... 47

2.1 ... Die technische Entwicklungsumgebung ... 47
2.2 ... Zusammenfassung ... 67

3. Ein einfaches neuronales Netz ... 69

3.1 ... Vorgeschichte ... 69
3.2 ... Her mit dem neuronalen Netz! ... 69
3.3 ... Neuron-Zoom-in ... 73
3.4 ... Stufenfunktion ... 78
3.5 ... Perceptron ... 80
3.6 ... Punkte im Raum -- Vektorrepräsentation ... 81
3.7 ... Horizontal und vertikal -- Spalten- und Zeilenschreibweise ... 88
3.8 ... Die gewichtete Summe ... 91
3.9 ... Schritt für Schritt -- Stufenfunktionen ... 91
3.10 ... Die gewichtete Summe reloaded ... 92
3.11 ... Alles zusammen ... 93
3.12 ... Aufgabe: Roboterschutz ... 96
3.13 ... Zusammenfassung ... 99
3.14 ... Referenzen ... 99

4. Lernen im einfachen Netz ... 101

4.1 ... Vorgeschichte: Man lässt planen ... 101
4.2 ... Lernen im Python-Code ... 102
4.3 ... Perceptron-Lernen ... 103
4.4 ... Trenngerade für einen Lernschritt ... 106
4.5 ... Perceptron-Lernalgorithmus ... 108
4.6 ... Die Trenngeraden bzw. Hyperplanes oder auch Hyperebenen für das
Beispiel ... 113
4.7 ... scikit-learn-kompatibler Estimator ... 116
4.8 ... scikit-learn-Perceptron-Estimator ... 123
4.9 ... Adaline ... 126
4.10 ... Zusammenfassung ... 136
4.11 ... Referenzen ... 137

5. Mehrschichtige neuronale Netze ... 139

5.1 ... Ein echtes Problem ... 139
5.2 ... XOR kann man lösen ... 141
5.3 ... Vorbereitungen für den Start ... 147
5.4 ... Der Plan für die Umsetzung ... 149
5.5 ... Das Setup ('class') ... 150
5.6 ... Die Initialisierung ('__init__') ... 152
5.7 ... Was für zwischendurch ('print') ... 154
5.8 ... Die Auswertung ('predict') ... 155
5.9 ... Die Verwendung ... 157
5.10 ... Zusammenfassung ... 159

6. Lernen im mehrschichtigen Netz ... 161

6.1 ... Wie misst man einen Fehler? ... 161
6.2 ... Gradientenabstieg an einem Beispiel ... 163
6.3 ... Ein Netz aus sigmoiden Neuronen ... 172
6.4 ... Der coole Algorithmus mit Vorwärts-Delta und
Rückwärts-Propagation ... 174
6.5 ... Ein 'fit'-Durchlauf ... 187
6.6 ... Zusammenfassung ... 196
6.7 ... Referenz ... 196

7. Convolutional Neural Networks ... 197

7.1 ... Aufbau eines CNN ... 199
7.2 ... Der Kodierungsblock ... 200
7.3 ... Der Prädiktionsblock ... 207
7.4 ... Trainieren von Convolutional Neural Networks ... 209
7.5 ... Zusammenfassung ... 218
7.6 ... Referenzen ... 219

8. Programmierung von Convolutional Neural Networks mit TensorFlow 2 ... 221

8.1 ... Convolutional Networks zur Handschriftenerkennung ... 221
8.2 ... Transfer Learning mit Convolutional Neural Networks ... 237
8.3 ... Zusammenfassung ... 246
8.4 ... Referenzen ... 247

Teil II. Deep Dive ... 249
9. Vom Hirn zum Netz ... 251

9.1 ... Ihr Gehirn in Aktion ... 251
9.2 ... Das Nervensystem ... 252
9.3 ... Das Gehirn ... 253
9.4 ... Neuronen und Gliazellen ... 255
9.5 ... Eine Übertragung im Detail ... 257
9.6 ... Darstellung von Zellen und Netzen ... 260
9.7 ... Zusammenfassung ... 262
9.8 ... Referenzen ... 263

10. Die Evolution der neuronalen Netze ... 265

10.1 ... 1940er ... 265
10.2 ... 1950er ... 268
10.3 ... 1960er ... 270
10.4 ... 1970er ... 270
10.5 ... 1980er ... 271
10.6 ... 1990er ... 284
10.7 ... 2000er ... 285
10.8 ... 2010er ... 285
10.9 ... Zusammenfassung ... 287
10.10 ... Referenzen ... 288

11. Der Machine-Learning-Prozess ... 289

11.1 ... Das CRISP-DM-Modell ... 289
11.2 ... Feature Engineering ... 293
11.3 ... Zusammenfassung ... 324
11.4 ... Referenzen ... 324

12. Lernverfahren ... 325

12.1 ... Lernstrategien ... 325
12.2 ... Werkzeuge ... 361
12.3 ... Zusammenfassung ... 366
12.4 ... Referenzen ... 366

13. Anwendungsbereiche und Praxisbeispiele ... 367

13.1 ... Warmup ... 367
13.2 ... Bildklassifikation ... 370
13.3 ... Erträumte Bilder ... 391
13.4 ... Zusammenfassung ... 402
13.5 ... Referenzen ... 402

A. Python kompakt ... 403
B. Mathematik kompakt ... 433
C. TensorFlow 2 und Keras ... 455
Index ... 467 

Mehr vom Verlag:

Rheinwerk Verlag GmbH

Mehr aus der Reihe:

Rheinwerk Computing

Produktdetails

Medium: Buch
Format: Kartoniert
Seiten: 479
Sprache: Deutsch
Erschienen: Mai 2020
Auflage: 2. Auflage
Band-Nr.: Book XIV
Sonstiges: Großformatiges Paperback. Klappenbroschur. 459/074
Maße: 227 x 174 mm
Gewicht: 881 g
ISBN-10: 3836274507
ISBN-13: 9783836274500
Verlagsbestell-Nr.: 459/07450

Herstellerkennzeichnung

Rheinwerk Verlag GmbH
Rheinwerkallee 4
53227 Bonn
E-Mail: Info@rheinwerk-verlag.de

Bestell-Nr.: 28891713 
Libri-Verkaufsrang (LVR):
Libri-Relevanz: 40 (max 9.999)
Bestell-Nr. Verlag: 459/07450

Ist ein Paket? 0
Rohertrag: 6,98 €
Porto: 2,75 €
Deckungsbeitrag: 4,23 €

LIBRI: 0000000
LIBRI-EK*: 20.96 € (25%)
LIBRI-VK: 29,90 €
Libri-STOCK: 0
LIBRI: 044 Vergriffen - Erscheinungstermin NA unbestimmt * EK = ohne MwSt.

UVP: 0 
Warengruppe: 16330 

KNO: 81700275
KNO-EK*: 18.84 € (25%)
KNO-VK: 29,90 €
KNO-STOCK: 0
KNO-MS: 07

KNO-SAMMLUNG: Rheinwerk Computing
KNOABBVERMERK: 2. Aufl. 2020. 479 S. 23 cm
KNOSONSTTEXT: Großformatiges Paperback. Klappenbroschur. 459/074
KNOZUSATZTEXT: Bisherige Ausg. siehe T.-Nr.72677572.
KNO-BandNr. Text:Book XIV
Einband: Kartoniert
Auflage: 2. Auflage
Sprache: Deutsch

Alle Preise inkl. MwSt. , innerhalb Deutschlands liefern wir immer versandkostenfrei . Informationen zum Versand ins Ausland .

Kostenloser Versand *

innerhalb eines Werktages

OHNE RISIKO

30 Tage Rückgaberecht

Käuferschutz

mit Geld-Zurück-Garantie