PORTO-
FREI

Deep Learning

von Goodfellow, Ian / Bengio, Yoshua / Courville, Aaron   (Autor)

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. "Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.†—Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Buch (Gebunden)

EUR 94,00

Alle Preisangaben inkl. MwSt.

Auch verfügbar als:

SOFORT LIEFERBAR (am Lager)

Versandkostenfrei*

Versandtermin: 14. Juni 2025, wenn Sie jetzt bestellen.
(innerhalb Deutschlands, Sendungen in Geschenkverpackung: + 1 Werktag)

 
 

Produktbeschreibung

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.

"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.†—Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.

Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors. 

Kritik

[T]he AI bible... the text should be mandatory reading by all data scientists and machine learning practitioners to get a proper foothold in this rapidly growing area of next-gen technology. Daniel D. Gutierrez, insideBIGDATA 

Autoreninfo

Ian Goodfellow is a Research Scientist at Google.

Yoshua Bengio is Professor of Computer Science at the Universit‚ de Montr‚al.

Aaron Courville is Assistant Professor of Computer Science at the Universit‚ de Montr‚al. 

Produktdetails

Medium: Buch
Format: Gebunden
Seiten: XXII, 775
Sprache: Englisch
Erschienen: November 2016
Maße: 185 x 234 mm
Gewicht: 1330 g
ISBN-10: 0262035618
ISBN-13: 9780262035613

Herstellerkennzeichnung

Libri GmbH
Europaallee 1
36244 Bad Hersfeld
E-Mail: gpsr@libri.de

Bestell-Nr.: 17645432 
Libri-Verkaufsrang (LVR): 102391
Libri-Relevanz: 20 (max 9.999)
 

Ist ein Paket? 1
Rohertrag: 12,30 €
Porto: 3,35 €
Deckungsbeitrag: 8,95 €

LIBRI: 2589277
LIBRI-EK*: 75.55 € (14%)
LIBRI-VK: 94,00 €
Libri-STOCK: 21
* EK = ohne MwSt.
P_SALEALLOWED: AD AE AF AG AI AL AM AO AQ AR AS AT AU AW AX AZ BA BB BD BE BF BG BH BI BJ BL BM BN BO BQ BR BS BT BV BW BY BZ CA CC CD CF CG CH CI CK CL CM CN CO CR CU CV CW CX CY CZ DE DJ DK DM DO DZ EC EE EG EH ER ES ET FI FJ FK FM FO FR GA GB GD GE GF GG GH GI GL GM GN GP GQ GR GS GT GU GW GY HK HM HN HR HT HU ID IE IL IM IN IO IQ IR IS IT JE JM JO JP KE KG KH KI KM KN KP KR KW KY KZ LA LB LC LI LK LR LS LT LU LV LY MA MC MD ME MF MG MH MK ML MM MN MO MP MQ MR MS MT MU MV MW MX MY MZ NA NC NE NF NG NI NL NO NP NR NU NZ OM PA PE PF PG PH PK PL PM PN PR PS PT PW PY QA RE RO RS RU RW SA SB SC SD SE SG SH SI SJ SK SL SM SN SO SR SS ST SV SX SY SZ TC TD TF TG TH TJ TK TL TM TN TO TR TT TV TW TZ UA UG UM US UY UZ VA VC VE VG VI VN VU WF WS YE YT ZA ZM ZW
P_SALEFORBIDDEN: AN CS YU
DRM: 0
0 = Kein Kopierschutz
1 = PDF Wasserzeichen
2 = DRM Adobe
3 = DRM WMA (Windows Media Audio)
4 = MP3 Wasserzeichen
6 = EPUB Wasserzeichen

UVP: 2 
Warengruppe: 16320 

KNO: 63541845
KNO-EK*: 57.95 € (20%)
KNO-VK: 123,10 €
KNO-STOCK: 2

KNO-SAMMLUNG: Adaptive Computation and Machine Learning series
P_ABB: 66 color illus., 100 b&w illus.
KNOABBVERMERK: 2016. 800 S. 66 COLOR ILLUS., 100 B&W ILLUS. 9.2500 in
Einband: Gebunden
Sprache: Englisch
Beilage(n): ,

Alle Preise inkl. MwSt. , innerhalb Deutschlands liefern wir immer versandkostenfrei . Informationen zum Versand ins Ausland .

Kostenloser Versand *

innerhalb eines Werktages

OHNE RISIKO

30 Tage Rückgaberecht

Käuferschutz

mit Geld-Zurück-Garantie