PORTO-
FREI

Finite-Elemente-Methoden im Stahlbau

von Kraus, Matthias / Kindmann, Rolf   (Autor)

Die Finite-Elemente-Methode (FEM) wird seit vielen Jahren im Stahlbau als Standardverfahren zur Berechnung und Bemessung von Tragwerken benutzt. Nach einer Einführung in die Methodik und Erläuterungen zum Verständnis konzentriert sich das Buch auf die Ermittlung von Schnittgrößen, Verformungen, Verzweigungslasten und Eigenformen für Stahlkonstruktionen. Neben linearen Berechnungen für Tragwerke bilden die Stabilitätsfälle Biegeknicken, Biegedrillknicken und Plattenbeulen mit der Ermittlung von Verzweigungslasten und Berechnungen nach Theorie II. Ordnung wichtige Schwerpunkte. Hinzu kommt die Untersuchung von Querschnitten, für die Berechnungen mit der FEM zukünftig stark an Bedeutung gewinnen werden. Für praktisch tätige Ingenieure und Studierende gleichermaßen werden alle notwendigen Berechnungen für die Bemessung von Tragwerken auf Grundlage der europäischen Normen (Eurocode 3) anschaulich dargestellt. Dabei wird auch die Ermittlung der Grenztragfähigkeit stabilitätsgefährdeter Stützen und Träger nach der Fließzonentheorie eingehend behandelt, da zu erwarten ist, dass diese Berechnungsmethode zukünftig vermehrt in der Baupraxis verwendet werden wird. Darüber hinaus wurden für die 2. Auflage insbesondere die Berechnungsbeispiele ergänzt und vertieft.

Buch (Kartoniert)

EUR 59,00

Alle Preisangaben inkl. MwSt.

SOFORT LIEFERBAR (am Lager)
(Nur noch wenige Exemplare auf Lager)

Versandkostenfrei*

Versandtermin: 11. Juni 2025, wenn Sie jetzt bestellen.
(innerhalb Deutschlands, Sendungen in Geschenkverpackung: + 1 Werktag)

 
 

Produktbeschreibung

Die Finite-Elemente-Methode (FEM) wird seit vielen Jahren im Stahlbau als Standardverfahren zur Berechnung und Bemessung von Tragwerken benutzt. Nach einer Einführung in die Methodik und Erläuterungen zum Verständnis konzentriert sich das Buch auf die Ermittlung von Schnittgrößen, Verformungen, Verzweigungslasten und Eigenformen für Stahlkonstruktionen. Neben linearen Berechnungen für Tragwerke bilden die Stabilitätsfälle Biegeknicken, Biegedrillknicken und Plattenbeulen mit der Ermittlung von Verzweigungslasten und Berechnungen nach Theorie II. Ordnung wichtige Schwerpunkte. Hinzu kommt die Untersuchung von Querschnitten, für die Berechnungen mit der FEM zukünftig stark an Bedeutung gewinnen werden. Für praktisch tätige Ingenieure und Studierende gleichermaßen werden alle notwendigen Berechnungen für die Bemessung von Tragwerken auf Grundlage der europäischen Normen (Eurocode 3) anschaulich dargestellt. Dabei wird auch die Ermittlung der Grenztragfähigkeit stabilitätsgefährdeter Stützen und Träger nach der Fließzonentheorie eingehend behandelt, da zu erwarten ist, dass diese Berechnungsmethode zukünftig vermehrt in der Baupraxis verwendet werden wird. Darüber hinaus wurden für die 2. Auflage insbesondere die Berechnungsbeispiele ergänzt und vertieft. 

Inhaltsverzeichnis

1 Einleitung und Übersicht
1.1 Erforderliche Nachweise und Nachweisverfahren
1.2 Verfahren zur Schnittgrößenermittlung
1.3 Elementtypen und Anwendungsbereiche
1.4 Lineare und nichtlineare Berechnungen
1.5 Bezeichnungen und Annahmen
1.6 Grundlegende Beziehungen
1.7 Linearisierung
1.8 Software/Downloads

2 Grundlagen der FEM
2.1 Allgemeines
2.2 Grundideen und Methodik
2.3 Ablauf der Berechnungen
2.4 Gleichgewicht
2.5 Ansatzfunktionen für die Verformungen

3 FEM für lineare Berechnungen von Stabtragwerken
3.1 Vorbemerkungen
3.2 Stabelemente für lineare Berechnungen
3.3 Knotengleichgewicht im globalen Koordinatensystem
3.4 Bezugssysteme und Transformationen
3.5 Gleichungssystem
3.6 Berechnung der Verformungsgrößen
3.7 Ermittlung der Schnittgrößen
3.8 Ermittlung der Auflagerreaktionen
3.9 Einwirkungen/Lastgrößen
3.10 Federn und Schubfelder
3.11 Gelenke und Gelenkfedern
3.12 Einflusslinien
3.13 Übertragungsmatrizenverfahren
3.14 Schubweiche Stabelemente

4 FEM für nichtlineare Berechnungen von Stabtragwerken
4.1 Allgemeines
4.2 Gleichgewicht am verformten System
4.3 Ergänzung der virtuellen Arbeit
4.4 Knotengleichgewicht unter Berücksichtigung von Verformungen
4.5 Geometrische Steifigkeitsmatrix
4.6 Sonderfall: Biegung mit Druck- bzw. Zugnormalkraft
4.7 Vorverformungen und geometrische Ersatzimperfektionen
4.8 Berechnungen nach Theorie II. Ordnung und Nachweisschnittgrößen
4.9 Stabilitätsuntersuchungen/Verzweigungslasten
4.10 Eigenformen/Knickbiegelinien
4.11 Fließgelenktheorie

5 Anwendungsbeispiele für Stabtragwerke
5.1 Übersicht
5.2 Träger
5.3 Stützen und andere Druckstäbe
5.4 Fachwerke
5.5 Rahmen und Stabwerke
5.6 Trägerroste

6 FEM für ebene Flächentragwerke - Plattenbeulen
6.1 Scheiben und Platten
6.2 Spannungen und Schnittgrößen
6.3 Verschiebungsgrößen
6.4 Grundlegende Beziehungen
6.5 Prinzip der virtuellen Arbeit
6.6 Scheiben und Platten im Stahlbau
6.7 Steifigkeitsmatrix für ein Plattenelement
6.8 Geometrische Steifigkeitsmatrix für das Plattenbeulen
6.9 Längs- und querausgesteifte Platten
6.10 Plattenbeulnachweise nach DIN EN 1993-1-5
6.11 Berechnung von Beulspannungen und Beulflächen
6.12 Anwendungsbeispiele zum Plattenbeulen

7 FEM für Stabquerschnitte
7.1 Aufgabenstellungen
7.2 Normierte Bezugssysteme und Querschnittskennwerte
7.3 Prinzip der virtuellen Arbeit
7.4 Eindimensionale Elemente für dünnwandige Querschnitte
7.5 Zweidimensionale Elemente für dickwandige Querschnitte
7.6 Berechnungsablauf
7.7 Anwendungsbeispiele
7.8 Schubkorrekturfaktoren

8 Gleichungssysteme
8.1 Problemstellung
8.2 Lösungsverfahren
8.3 Gaußscher Algorithmus
8.4 Cholesky-Verfahren
8.5 Gaucho-Verfahren
8.6 Berechnungsbeispiel
8.7 Ergänzende Hinweise

9 Lösung von Eigenwertproblemen
9.1 Problemstellung
9.2 Erläuterungen zum Verständnis
9.3 Matrizenzerlegungsverfahren
9.4 Inverse Vektoriteration
9.5 Kombination der Lösungsverfahren

10 FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie
10.1 Einführung
10.2 Hinweise zu geometrisch nichtlinearen Berechnungen
10.3 Berücksichtigung der physikalischen Nichtlinearität
10.4 Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie
10.5 Gleichgewicht
10.6 Steifigkeitsmatrix für Bauteile mit Fließzonen
10.7 Berechnungsbeispiele

11 Grundlagen zur Beschreibung des plastischen Materialverhaltens
11.1 Einleitung
11.2 Grundlegende mechanische Beziehungen
11.3 Beschreibung der Plastizität
11.4 Hinweise zur Berücksichtigung der Plastizität in numerischen Berechnungen
Literaturverzeichnis
Stichwortverzeichnis 

Autoreninfo

Univ.-Prof. Dr.-Ing. Matthias Kraus studierte Bauingenieurwesen an der Technischen Universität Darmstadt. Von 2001 bis 2010 war er am Lehrstuhl für Stahl- und Verbundbau der Ruhr-Universität Bochum tätig, zunächst als Wissenschaftlicher Mitarbeiter und nach der Promotion 2005 in der Funktion des Oberingenieurs. Im Jahre 2010 wechselte er als Oberingenieur und Abteilungsleiter Tragwerksplanung zur Ingenieursozietät Schürmann - Kindmann und Partner in Dortmund und übernahm Lehraufträge an der Ruhr-Universität Bochum und der Vietnamese-German University in Ho-Chi-Minh Stadt. Im Jahre 2015 folgte er dem Ruf an die Bauhaus-Universität Weimar zum Lehrstuhlinhaber der Professur Stahl- und Hybridbau.
Univ.-Prof. em. Dr.-Ing. Rolf Kindmann studierte Bauingenieurwesen an der Ruhr-Universität Bochum. Von 1974 bis 1989 war er für sechs Jahre als Wissenschaftlicher Mitarbeiter an der Ruhr-Universität Bochum und für zehn Jahre in verschiedenen Positionen bei Thyssen Engineering tätig, zuletzt als Hauptabteilungsleiter aller technischen Büros. Im Jahre 1990 wurde er zum Ordinarius des Lehrstuhls für Stahl- und Verbundbau an der Ruhr-Universität Bochum ernannt und im Jahre 1991 gründete er die Ingenieursozietät Schürmann - Kindmann und Partner SKP in Dortmund, in der er als Beratender Ingenieur, Prüfingenieur für Baustatik (Fachrichtungen Metall- und Massivbau) sowie als Gutachter wirkte. Seit Beendigung seiner Tätigkeit als Gesellschafter ist Herr Prof. Kindmann der Ingenieursozietät SKP weiterhin eng verbunden.
 

Mehr vom Verlag:

Ernst W. + Sohn Verlag

Mehr aus der Reihe:

Bauingenieur-Praxis

Mehr vom Autor:

Kraus, Matthias / Kindmann, Rolf

Produktdetails

Medium: Buch
Format: Kartoniert
Seiten: XIV, 504
Sprache: Deutsch
Erschienen: Dezember 2019
Auflage: 2., überarbeitete und erweiterte Auflage
Sonstiges: .1603149 000
Maße: 244 x 171 mm
Gewicht: 1110 g
ISBN-10: 3433031495
ISBN-13: 9783433031490
Verlagsbestell-Nr.: 1603149 000

Herstellerkennzeichnung

Ernst W. + Sohn Verlag
Rotherstraße 21
10245 Berlin
E-Mail: info@ernst-und-sohn.de

Bestell-Nr.: 25333120 
Libri-Verkaufsrang (LVR): 252005
Libri-Relevanz: 2 (max 9.999)
Bestell-Nr. Verlag: 1603149 000

Ist ein Paket? 1
Rohertrag: 13,78 €
Porto: 3,35 €
Deckungsbeitrag: 10,43 €

LIBRI: 2483612
LIBRI-EK*: 41.36 € (25%)
LIBRI-VK: 59,00 €
Libri-STOCK: 3
* EK = ohne MwSt.
P_SALEALLOWED: WORLD
DRM: 0
0 = Kein Kopierschutz
1 = PDF Wasserzeichen
2 = DRM Adobe
3 = DRM WMA (Windows Media Audio)
4 = MP3 Wasserzeichen
6 = EPUB Wasserzeichen

UVP: 0 
Warengruppe: 16860 

KNO: 75004766
KNO-EK*: 34.66 € (25%)
KNO-VK: 59,00 €
KNO-STOCK:
KNO-MS: 17

KNO-SAMMLUNG: Bauingenieur-Praxis (BiP)
P_ABB: 260 schwarz-weiße Abbildungen, 46 schwarz-weiße Tabellen
KNOABBVERMERK: 2. Aufl. 2020. XIV, 504 S. 333 SW-Abb., 65 Tabellen. 244 mm
KNOSONSTTEXT: .1603149 000
KNOZUSATZTEXT: Bisherige Ausg. siehe T.-Nr.18426335.
Einband: Kartoniert
Auflage: 2., überarbeitete und erweiterte Auflage
Sprache: Deutsch

Alle Preise inkl. MwSt. , innerhalb Deutschlands liefern wir immer versandkostenfrei . Informationen zum Versand ins Ausland .

Kostenloser Versand *

innerhalb eines Werktages

OHNE RISIKO

30 Tage Rückgaberecht

Käuferschutz

mit Geld-Zurück-Garantie