PORTO-
FREI

Machine Learning für Zeitreihen

Einstieg in Regressions-, ARIMA- und Deep Learning-Verfahren mit Python. Inkl. E-Book

von Hirschle, Jochen   (Autor)

- Konzepte Schritt für Schritt erklärt - Die Eigenarten von Zeitreihendaten verstehen: Zeitfenster zum Anlernen einsetzen; mit latenten, saisonalen und Trend-Komponenten arbeiten - Anleitungen zur Umsetzung in Python mit ausführlichen Code-Kommentaren - Mit TensorFlow2 Deep-Learning-Verfahren zur Prognose aufbauen, anlernen und produktiv einsetzen Daten über Vorgänge werden in der verarbeitenden Industrie, der Logistik oder im Finanzsektor im Sekundentakt aufgezeichnet: der Verlauf eines Aktienkurses, die Verkaufszahlen eines Produkts, die Sensordaten einer Turbine. Solche Daten informieren nicht nur über isolierte Zustände; sie sind wie Filme, die den Verlauf eines Vorgangs mit einer Serie einzelner Bilder nachzeichnen. Intelligente Algorithmen können die Muster dieser Verläufe analysieren, sie anlernen und über das Beobachtungsfenster hinaus fortschreiben: Zustände in der Zukunft werden prognostizierbar. Das Buch bietet eine leicht verständliche Einführung in die Konzepte und die Praxis der Zeitreihenanalyse. Es zeigt, wie bewährte und neuere Lernalgorithmen arbeiten und wie sie sich mit Python anlernen und produktiv einsetzen lassen. An einer Vielzahl von Anwendungsbeispielen werden die Vorbereitung der Daten, der Anlern- und Schätzprozess Schritt für Schritt erklärt. Aus dem Inhalt: - Zeitreihendaten mit pandas aufbereiten, fehlende Daten imputieren, mit Datumsangaben arbeiten - Grundprinzipien maschinellen Lernens: Konzepte und Umsetzung mit Python und Scikit-Learn - Feature-Preprocessing: Standardisierung, Dimensionsreduktion, Verarbeitung kategorialer Daten - ARIMA-Modelle zur Analyse univariater Zeitreihen: Vorbereitung, Anlernen und Prognose mit Python und Statsmodels - Komplexe Zeitreihen mit Deep-Learning-Verfahren analysieren: Rekurrente und konvolutionale Netze verstehen und mit Python und TensorFlow 2 aufbauen und anlernen - Mit Zeifenstern arbeiten Vorkenntnisse in Machine-Learning-Verfahren sind nicht notwendig. Grundlegende Statistik- und Python-Kenntnisse sollten vorhanden sein. Der komplette Code im Buch sowie die Beispieldateien sind über ein GitHub-Repository verfügbar. EXTRA: E-Book inside. Systemvoraussetzungen für E-Book inside: Internet-Verbindung und Adobe-Reader oder Ebook-Reader bzw. Adobe Digital Editions.

Buch (Gebunden)

EUR 39,99

Alle Preisangaben inkl. MwSt.

SOFORT LIEFERBAR (am Lager)
(Nur noch wenige Exemplare auf Lager)

Versandkostenfrei*

Versandtermin: 11. Juni 2025, wenn Sie jetzt bestellen.
(innerhalb Deutschlands, Sendungen in Geschenkverpackung: + 1 Werktag)

 
 

Produktbeschreibung

- Konzepte Schritt für Schritt erklärt - Die Eigenarten von Zeitreihendaten verstehen: Zeitfenster zum Anlernen einsetzen; mit latenten, saisonalen und Trend-Komponenten arbeiten - Anleitungen zur Umsetzung in Python mit ausführlichen Code-Kommentaren - Mit TensorFlow2 Deep-Learning-Verfahren zur Prognose aufbauen, anlernen und produktiv einsetzen

Daten über Vorgänge werden in der verarbeitenden Industrie, der Logistik oder im Finanzsektor im Sekundentakt aufgezeichnet: der Verlauf eines Aktienkurses, die Verkaufszahlen eines Produkts, die Sensordaten einer Turbine. Solche Daten informieren nicht nur über isolierte Zustände; sie sind wie Filme, die den Verlauf eines Vorgangs mit einer Serie einzelner Bilder nachzeichnen. Intelligente Algorithmen können die Muster dieser Verläufe analysieren, sie anlernen und über das Beobachtungsfenster hinaus fortschreiben: Zustände in der Zukunft werden prognostizierbar. Das Buch bietet eine leicht verständliche Einführung in die Konzepte und die Praxis der Zeitreihenanalyse. Es zeigt, wie bewährte und neuere Lernalgorithmen arbeiten und wie sie sich mit Python anlernen und produktiv einsetzen lassen. An einer Vielzahl von Anwendungsbeispielen werden die Vorbereitung der Daten, der Anlern- und Schätzprozess Schritt für Schritt erklärt.

Aus dem Inhalt: - Zeitreihendaten mit pandas aufbereiten, fehlende Daten imputieren, mit Datumsangaben arbeiten - Grundprinzipien maschinellen Lernens: Konzepte und Umsetzung mit Python und Scikit-Learn - Feature-Preprocessing: Standardisierung, Dimensionsreduktion, Verarbeitung kategorialer Daten - ARIMA-Modelle zur Analyse univariater Zeitreihen: Vorbereitung, Anlernen und Prognose mit Python und Statsmodels - Komplexe Zeitreihen mit Deep-Learning-Verfahren analysieren: Rekurrente und konvolutionale Netze verstehen und mit Python und TensorFlow 2 aufbauen und anlernen - Mit Zeifenstern arbeiten

Vorkenntnisse in Machine-Learning-Verfahren sind nicht notwendig. Grundlegende Statistik- und Python-Kenntnisse sollten vorhanden sein.

Der komplette Code im Buch sowie die Beispieldateien sind über ein GitHub-Repository verfügbar.

EXTRA: E-Book inside. Systemvoraussetzungen für E-Book inside: Internet-Verbindung und Adobe-Reader oder Ebook-Reader bzw. Adobe Digital Editions. 

Autoreninfo

Dr. Jochen Hirschle ist IT-Trainer und Consultant für Machine Learning und Deep Learning in Braunschweig. Er ist erfahrener Programmierer in Python und Java und war als Wissenschaftler und Dozent an den Universitäten in Köln, Innsbruck und Frankfurt tätig. Er kennt die Fallstricke der statistischen Datenanalyse und die Tricks maschinellen Lernens aus seiner langjährigen Praxis und er weiß, wie sich komplexe Sachverhalte einfach erklären lassen. 

Mehr vom Verlag:

Hanser Fachbuchverlag

Mehr vom Autor:

Hirschle, Jochen

Produktdetails

Medium: Buch
Format: Gebunden
Seiten: 277
Sprache: Deutsch
Erschienen: Dezember 2020
Sonstiges: 553/46726
Maße: 244 x 180 mm
Gewicht: 630 g
ISBN-10: 3446467262
ISBN-13: 9783446467262
Verlagsbestell-Nr.: 553/46726

Herstellerkennzeichnung

Hanser Fachbuchverlag
Kolberger Str. 22
81679 München
E-Mail: info@hanser.de

Bestell-Nr.: 30096550 
Libri-Verkaufsrang (LVR): 265329
Libri-Relevanz: 35 (max 9.999)
Bestell-Nr. Verlag: 553/46726

Ist ein Paket? 0
Rohertrag: 8,40 €
Porto: 2,75 €
Deckungsbeitrag: 5,65 €

LIBRI: 2070969
LIBRI-EK*: 28.03 € (25%)
LIBRI-VK: 39,99 €
Libri-STOCK: 3
* EK = ohne MwSt.
DRM: 0
0 = Kein Kopierschutz
1 = PDF Wasserzeichen
2 = DRM Adobe
3 = DRM WMA (Windows Media Audio)
4 = MP3 Wasserzeichen
6 = EPUB Wasserzeichen

UVP: 0 
Warengruppe: 16330 

KNO: 87650164
KNO-EK*: 25.2 € (25%)
KNO-VK: 39,99 €
KNO-STOCK: 0
KNO-MS: 15

KNOABBVERMERK: 2020. 277 S. 245 mm
KNOSONSTTEXT: 553/46726
Einband: Gebunden
Sprache: Deutsch

Alle Preise inkl. MwSt. , innerhalb Deutschlands liefern wir immer versandkostenfrei . Informationen zum Versand ins Ausland .

Kostenloser Versand *

innerhalb eines Werktages

OHNE RISIKO

30 Tage Rückgaberecht

Käuferschutz

mit Geld-Zurück-Garantie