PORTO-
FREI

Improved Model Selection Criteria

von Rahman, M. Shafiqur / Nahar, Syfun   (Autor)

This book is based on the important contributions in model selection by Dr. M. S. Rahman and his co-authors Professor M. L. King, Dr. G. K. Bose, Dr. M. R. Laskar and Mrs. S. Nahar. We have developed an analytical formula for finding the probability of correct selection. We have proposed a new criterion named JIC based on the combination of BIC and RBAR criteria and showed that JIC performed better in most cases than all existing criteria. We have introduced generalized criterion based on residual sum of squares with a multiplicative penalty function. We have proposed improved penalty functions for information criteria-based model selection which involves the use of computer simulation methods to improve the choice of penalty function. We have also examined the effect of making a restriction on parameters of interest within a model selection framework. We have studied the relation between model selection and hypothesis testing. Marginal penalty functions are derived for all criteria and used to compare the performances of all existing criteria. It is observed that in general RBAR criterion favors the higher parametric model and BIC favors the lower parametric model.

Buch (Kartoniert)

EUR 57,90

Alle Preisangaben inkl. MwSt.

  Verlagsbedingte Lieferzeit ca. 3 - 6 Werktage.
(Print on Demand. Lieferbar innerhalb von 3 bis 6 Tagen)

Versandkostenfrei*

Dieser Artikel kann nicht bestellt werden.
 

Produktbeschreibung

This book is based on the important contributions in model selection by Dr. M. S. Rahman and his co-authors Professor M. L. King, Dr. G. K. Bose, Dr. M. R. Laskar and Mrs. S. Nahar. We have developed an analytical formula for finding the probability of correct selection. We have proposed a new criterion named JIC based on the combination of BIC and RBAR criteria and showed that JIC performed better in most cases than all existing criteria. We have introduced generalized criterion based on residual sum of squares with a multiplicative penalty function. We have proposed improved penalty functions for information criteria-based model selection which involves the use of computer simulation methods to improve the choice of penalty function. We have also examined the effect of making a restriction on parameters of interest within a model selection framework. We have studied the relation between model selection and hypothesis testing. Marginal penalty functions are derived for all criteria and used to compare the performances of all existing criteria. It is observed that in general RBAR criterion favors the higher parametric model and BIC favors the lower parametric model. 

Autoreninfo

Rahman, M. Shafiqur
Dr. Shafiqur & Mrs. Syfun were born and brought up in Bangladesh and then migrated to Australia. He holds a PhD and she holds an M.Sc. in Statistics from Dalhousie Univ. of Canada. He has 40 years & She has 28 years of teaching experience at six Universities, Chittagong, Dalhousie & Saint Mary's of Canada, Monash of Australia, UPNG and SQU of Oman. 

Produktdetails

Medium: Buch
Format: Kartoniert
Seiten: 164
Sprache: Englisch
Erschienen: Juli 2020
Maße: 220 x 150 mm
Gewicht: 262 g
ISBN-10: 6200477078
ISBN-13: 9786200477071

Herstellerkennzeichnung

E-Mail: info@bod.de

Bestell-Nr.: 29781535 
Libri-Verkaufsrang (LVR):
Libri-Relevanz: 0 (max 9.999)
 

Ist ein Paket? 0
Rohertrag: 16,23 €
Porto: 1,84 €
Deckungsbeitrag: 14,39 €

LIBRI: 0000000
LIBRI-EK*: 37.88 € (30%)
LIBRI-VK: 57,90 €
Libri-STOCK: 0
LIBRI: 097 Print on Demand. Lieferbar innerhalb von 7 bis 10 Tagen * EK = ohne MwSt.

UVP: 2 
Warengruppe: 16280 

KNO: 86013368
KNO-EK*: 34.06 € (30%)
KNO-VK: 57,90 €
KNO-STOCK: 0
KNO-MS: 97

KNOABBVERMERK: 2020. 164 S. 220 mm
Einband: Kartoniert
Sprache: Englisch
Beilage(n): Paperback

Im Themenkatalog stöbern

› Start › English Books

Entdecken Sie mehr

Alle Preise inkl. MwSt. , innerhalb Deutschlands liefern wir immer versandkostenfrei . Informationen zum Versand ins Ausland .

Kostenloser Versand *

innerhalb eines Werktages

OHNE RISIKO

30 Tage Rückgaberecht

Käuferschutz

mit Geld-Zurück-Garantie