PORTO-
FREI

Quantum Field Theory

von Srednicki, Mark   (Autor)

Textbook on elementary particles for graduate students studying quantum field theory and elementary particle theory.

Buch (Gebunden)

EUR 103,70

Alle Preisangaben inkl. MwSt.

  Verlagsbedingte Lieferzeit ca. 3 - 6 Werktage.
(Print on Demand. Lieferbar innerhalb von 3 bis 6 Tagen)

Versandkostenfrei*

Dieser Artikel kann nicht bestellt werden.
 

Produktbeschreibung

Quantum field theory is the basic mathematical framework that is used to describe elementary particles. This textbook provides a complete and essential introduction to the subject. Assuming only an undergraduate knowledge of quantum mechanics and special relativity, this book is ideal for graduate students beginning the study of elementary particles. The step-by-step presentation begins with basic concepts illustrated by simple examples, and proceeds through historically important results to thorough treatments of modern topics such as the renormalization group, spinor-helicity methods for quark and gluon scattering, magnetic monopoles, instantons, supersymmetry, and the unification of forces. The book is written in a modular format, with each chapter as self-contained as possible, and with the necessary prerequisite material clearly identified. It is based on a year-long course given by the author and contains extensive problems, with password protected solutions available to lecturers at (...). 

Inhaltsverzeichnis

Preface for students; Preface for instructors; Acknowledgements; Part I. Spin
Zero: 1. Attempts at relativistic quantum mechanics; 2. Lorentz invariance; 3.
Canonical quantization of scalar fields; 4. The spin-statistics theorem; 5. The
LSZ reduction formula; 6. Path integrals in quantum mechanics; 7. The path
integral for the harmonic oscillator; 8. The path integral for free field
theory; 9. The path integral for interacting field theory; 10. Scattering
amplitudes and the Feynman rules; 11. Cross sections and decay rates; 12.
Dimensional analysis with ?=c=1; 13. The Lehmann-Källén form; 14. Loop
corrections to the propagator; 15. The one-loop correction in Lehmann-Källén
form; 16. Loop corrections to the vertex; 17. Other 1PI vertices; 18.
Higher-order corrections and renormalizability; 19. Perturbation theory to all
orders; 20. Two-particle elastic scattering at one loop; 21. The quantum action;
22. Continuous symmetries and conserved currents; 23. Discrete symmetries: P, T,
C, and Z; 24. Nonabelian symmetries; 25. Unstable particles and resonances; 26.
Infrared divergences; 27. Other renormalization schemes; 28. The renormalization
group; 29. Effective field theory; 30. Spontaneous symmetry breaking; 31. Broken
symmetry and loop corrections; 32. Spontaneous breaking of continuous
symmetries; Part II. Spin One Half: 33. Representations of the Lorentz Group;
34. Left- and right-handed spinor fields; 35. Manipulating spinor indices; 36.
Lagrangians for spinor fields; 37. Canonical quantization of spinor fields I;
38. Spinor technology; 39. Canonical quantization of spinor fields II; 40.
Parity, time reversal, and charge conjugation; 41. LSZ reduction for
spin-one-half particles; 42. The free fermion propagator; 43. The path integral
for fermion fields; 44. Formal development of fermionic path integrals; 45. The
Feynman rules for Dirac fields; 46. Spin sums; 47. Gamma matrix technology; 48.
Spin-averaged cross sections; 49. The Feynman rules for majorana fields; 50.
Massless particles and spinor helicity; 51. Loop corrections in Yukawa theory;
52. Beta functions in Yukawa theory; 53. Functional determinants; Part III. Spin
One: 54. Maxwell's equations; 55. Electrodynamics in coulomb gauge; 56. LSZ
reduction for photons; 57. The path integral for photons; 58. Spinor
electrodynamics; 59. Scattering in spinor electrodynamics; 60. Spinor helicity
for spinor electrodynamics; 61. Scalar electrodynamics; 62. Loop corrections in
spinor electrodynamics; 63. The vertex function in spinor electrodynamics; 64.
The magnetic moment of the electron; 65. Loop corrections in scalar
electrodynamics; 66. Beta functions in quantum electrodynamics; 67. Ward
identities in quantum electrodynamics I; 68. Ward identities in quantum
electrodynamics II; 69. Nonabelian gauge theory; 70. Group representations; 71.
The path integral for nonabelian gauge theory; 72. The Feynman rules for
nonabelian gauge theory; 73. The beta function for nonabelian gauge theory; 74.
BRST symmetry; 75. Chiral gauge theories and anomalies; 76. Anomalies in global
symmetries; 77. Anomalies and the path integral for fermions; 78. Background
field gauge; 79. Gervais-Neveu gauge; 80. The Feynman rules for N x N matrix
fields; 81. Scattering in quantum chromodynamics; 82. Wilson loops, lattice
theory, and confinement; 83. Chiral symmetry breaking; 84. Spontaneous breaking
of gauge symmetries; 85. Spontaneously broken abelian gauge theory; 86.
Spontaneously broken nonabelian gauge theory; 87. The standard model: Gauge and
Higgs sector; 88. The standard model: Lepton sector; 89. The standard model:
Quark sector; 90. Electroweak interactions of hadrons; 91. Neutrino masses; 92.
Solitons and monopoles; 93. Instantons and theta vacua; 94. Quarks and theta
vacua; 95. Supersymmetry; 96. The minimal supersymmetric standard model; 97.
Grand unification; Bibliography. 

Kritik

'This accessible and conceptually structured introduction to quantum field theory will be of value not only to beginning students but also to practicing physicists interested in learning or reviewing specific topics. The book is organized in a modular fashion, which makes it easy to extract the basic information relevant to the reader's area(s) of interest. The material is presented in an intuitively clear and informal style. Foundational topics such as path integrals and Lorentz representations are included early in the exposition, as appropriate for a modern course; later material includes a detailed description of the Standard Model and other advanced topics such as instantons, supersymmetry, and unification, which are essential knowledge for working particle physicists, but which are not treated in most other field theory texts.' Washington Taylor, Massachusetts Institute of Technology 

Autoreninfo

Srednicki, Mark
Mark Srednicki is Professor of Physics at the University of California, Santa Barbara. He gained his undergraduate degree from Cornell University in 1977, and received a PhD from Stanford University in 1980. Professor Srednicki has held postdoctoral positions at Princeton University and the European Organization for Nuclear Research (CERN).  

Mehr vom Verlag:

Cambridge University Press

Mehr vom Autor:

Srednicki, Mark

Produktdetails

Medium: Buch
Format: Gebunden
Seiten: 664
Sprache: Englisch
Erschienen: März 2019
Maße: 250 x 175 mm
Gewicht: 1307 g
ISBN-10: 0521864496
ISBN-13: 9780521864497

Herstellerkennzeichnung

Libri GmbH
Europaallee 1
36244 Bad Hersfeld
E-Mail: gpsr@libri.de

Bestell-Nr.: 3050436 
Libri-Verkaufsrang (LVR):
Libri-Relevanz: 0 (max 9.999)
 

Ist ein Paket? 1
Rohertrag: 4,85 €
Porto: 3,35 €
Deckungsbeitrag: 1,50 €

LIBRI: 6385761
LIBRI-EK*: 92.07 € (5%)
LIBRI-VK: 103,70 €
Libri-STOCK: 0
LIBRI: 097 Print on Demand. Lieferbar innerhalb von 7 bis 10 Tagen * EK = ohne MwSt.
P_SALEALLOWED: WORLD
DRM: 0
0 = Kein Kopierschutz
1 = PDF Wasserzeichen
2 = DRM Adobe
3 = DRM WMA (Windows Media Audio)
4 = MP3 Wasserzeichen
6 = EPUB Wasserzeichen

UVP: 2 
Warengruppe: 16420 

KNO: 21418903
KNO-EK*: 27.89 € (22.5%)
KNO-VK: 54,60 €
KNO-STOCK:
KNO-MS: 17

P_ABB: 87 line diagrams, 3 half-tones, 250 exercises
KNOABBVERMERK: 2007 660 S. 90 b/w illus. 250 exercises 255 mm
Einband: Gebunden
Sprache: Englisch
Beilage(n): HC gerader Rücken kaschiert

Alle Preise inkl. MwSt. , innerhalb Deutschlands liefern wir immer versandkostenfrei . Informationen zum Versand ins Ausland .

Kostenloser Versand *

innerhalb eines Werktages

OHNE RISIKO

30 Tage Rückgaberecht

Käuferschutz

mit Geld-Zurück-Garantie