PORTO-
FREI

Machine Learning - kurz & gut

Eine Einführung mit Python, Scikit-Learn und TensorFlow

von Zeigermann, Oliver / Nguyen, Chi Nhan   (Autor)

Der kompakte Schnelleinstieg in Machine Learning und Deep Learning - Die 3. Auflage des Bestsellers wurde ergänzt durch Kapitel zu Large Language Models wie ChatGPT und zu MLOps - Anhand konkreter Datensätze lernst du einen typischen Workflow kennen: vom Datenimport über Datenbereinigung, Datenanalyse bis hin zur Datenvisualisierung - Nicht nur für zukünftige Data Scientists und ML-Profis geeignet, sondern durch seine durchdachte Didaktik auch für Interessierte, die nur am Rande mit ML zu tun haben, wie z.B. Softwareentwickler*innen Machine Learning beeinflusst heute beinahe alle Bereiche der Technik und der Gesellschaft. Dieses Buch bietet Interessierten, die einen technischen Hintergrund haben, die schnellstmögliche Einführung in das umfangreiche Themengebiet des maschinellen Lernens und der statistischen Datenanalyse. Dabei werden folgende Themen behandelt und mit praktischen Beispielen veranschaulicht: - Datenvorbereitung, Feature-Auswahl, Modellvalidierung - Supervised und Unsupervised Learning - Neuronale Netze und Deep Learning - Reinforcement Learning - LLMs - moderne Sprachmodelle - MLOps - Machine Learning für die Praxis Anhand von Beispieldatensätzen lernst du einen typischen Workflow kennen: vom Datenimport über Datenbereinigung, Datenanalyse bis hin zur Datenvisualisierung. Mit den Codebeispielen kannst du in Jupyter Notebooks experimentieren. Sie basieren auf Python und den Bibliotheken Scikit-Learn, Pandas, NumPy, TensorFlow und Keras. Nach der Lektüre dieses Buchs hast du einen Überblick über das gesamte Thema und kannst Ansätze einordnen und bewerten. Das Buch vermittelt dir eine solide Grundlage, um erste eigene Machine-Learning-Modelle zu trainieren und vertiefende Literatur zu verstehen.

eBook (PDF)
ebook-Hilfe 

ebook-Format   ebook-Format ebook-Format ebook-Format ebook-Format   ebook-Format

EUR 19,90

Alle Preisangaben inkl. MwSt.

Auch verfügbar als:

Sofort per Download verfügbar

 
 

Produktbeschreibung

Der kompakte Schnelleinstieg in Machine Learning und Deep Learning - Die 3. Auflage des Bestsellers wurde ergänzt durch Kapitel zu Large Language Models wie ChatGPT und zu MLOps - Anhand konkreter Datensätze lernst du einen typischen Workflow kennen: vom Datenimport über Datenbereinigung, Datenanalyse bis hin zur Datenvisualisierung - Nicht nur für zukünftige Data Scientists und ML-Profis geeignet, sondern durch seine durchdachte Didaktik auch für Interessierte, die nur am Rande mit ML zu tun haben, wie z.B. Softwareentwickler*innen Machine Learning beeinflusst heute beinahe alle Bereiche der Technik und der Gesellschaft. Dieses Buch bietet Interessierten, die einen technischen Hintergrund haben, die schnellstmögliche Einführung in das umfangreiche Themengebiet des maschinellen Lernens und der statistischen Datenanalyse. Dabei werden folgende Themen behandelt und mit praktischen Beispielen veranschaulicht: - Datenvorbereitung, Feature-Auswahl, Modellvalidierung - Supervised und Unsupervised Learning - Neuronale Netze und Deep Learning - Reinforcement Learning - LLMs - moderne Sprachmodelle - MLOps - Machine Learning für die Praxis Anhand von Beispieldatensätzen lernst du einen typischen Workflow kennen: vom Datenimport über Datenbereinigung, Datenanalyse bis hin zur Datenvisualisierung. Mit den Codebeispielen kannst du in Jupyter Notebooks experimentieren. Sie basieren auf Python und den Bibliotheken Scikit-Learn, Pandas, NumPy, TensorFlow und Keras. Nach der Lektüre dieses Buchs hast du einen Überblick über das gesamte Thema und kannst Ansätze einordnen und bewerten. Das Buch vermittelt dir eine solide Grundlage, um erste eigene Machine-Learning-Modelle zu trainieren und vertiefende Literatur zu verstehen. 

Autoreninfo

Oliver Zeigermann ist Entwickler, Architekt, Berater und Coach aus Hamburg. Über die letzten Jahrzehnte hat er Software in vielen unterschiedlichen Sprachen und Technologien entwickelt. In den letzten Jahren ist er tiefer in die Analyse und Verarbeitung von Daten eingestiegen. Chi Nhan Nguyen arbeitet als Senior Data Scientist bei der softgarden e-recruiting GmbH. Seine Stationen im akademischen Ausland waren u.a. das Fermilab, die Texas A&M University, der Teilchenbeschleuniger LHC am CERN und die Columbia University. 

Mehr vom Verlag:

O'Reilly

Mehr aus der Reihe:

Haufe Fachbuch

Produktdetails

Medium: eBook
Format: PDF
Kopierschutz: PERSONALISIERTES WASSERZEICHEN
Seiten: 278
Sprache: Deutsch
Erschienen: Juli 2024
Auflage: 3. Auflage
ISBN-10: 3960108567
ISBN-13: 9783960108566

Bestell-Nr.: 38933326 
Libri-Verkaufsrang (LVR):
Libri-Relevanz: 0 (max 9.999)
 

Ist ein Paket? 0
Rohertrag: 3,72 €
Porto: 1,84 €
Deckungsbeitrag: 1,88 €

LIBRI: 0000000
LIBRI-EK*: 14.88 € (20%)
LIBRI-VK: 19,90 €
Libri-STOCK: 1
* EK = ohne MwSt.
P_SALEALLOWED: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MT NL NO PL PT RO SE SI SK
P_SUPPLYTOCOUNTRY: IE IT LV LT LU MT NL NO PL PT RO SK SI ES SE CH GB DE AT FR BE BG LI EE CY CZ DK FI GR HU IS
DRM: 1
0 = Kein Kopierschutz
1 = PDF Wasserzeichen
2 = DRM Adobe
3 = DRM WMA (Windows Media Audio)
4 = MP3 Wasserzeichen
6 = EPUB Wasserzeichen

UVP: 0 
Warengruppe: 86320 

KNO: 00000000
KNO-EK*: € (%)
KNO-VK: 0,00 €
KNO-STOCK:

Einband: PDF
Auflage: 3. Auflage
Sprache: Deutsch

Im Themenkatalog stöbern

› Start › eBooks

Alle Preise inkl. MwSt. , innerhalb Deutschlands liefern wir immer versandkostenfrei . Informationen zum Versand ins Ausland .

Kostenloser Versand *

innerhalb eines Werktages

OHNE RISIKO

30 Tage Rückgaberecht

Käuferschutz

mit Geld-Zurück-Garantie