PORTO-
FREI

Notes on Coxeter Transformations and the McKay Correspondence

von Stekolshchik, Rafael   (Autor)

One of the beautiful results in the representation theory of the finite groups is McKay's theorem on a correspondence between representations of the binary polyhedral group of SU(2) and vertices of an extended simply-laced Dynkin diagram. The Coxeter transformation is the main tool in the proof of the McKay correspondence, and is closely interrelated with the Cartan matrix and Poincaré series. The Coxeter functors constructed by Bernstein, Gelfand and Ponomarev plays a distinguished role in the representation theory of quivers. On these pages, the ideas and formulas due to J. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, H.S.M. Coxeter, V. Dlab and C.M. Ringel, V. Kac, J. McKay, T.A. Springer, B. Kostant, P. Slodowy, R. Steinberg, W. Ebeling and several other authors, as well as the author and his colleagues from Subbotin's seminar, are presented in detail. Several proofs seem to be new.

Buch (Gebunden)

EUR 106,99

Alle Preisangaben inkl. MwSt.

Auch verfügbar als:

  Verlagsbedingte Lieferzeit ca. 3 - 6 Werktage.
(Print on Demand. Lieferbar innerhalb von 3 bis 6 Tagen)

Versandkostenfrei*

Dieser Artikel kann nicht bestellt werden.
 

Produktbeschreibung

One of the beautiful results in the representation theory of the finite groups is McKay's theorem on a correspondence between representations of the binary polyhedral group of SU(2) and vertices of an extended simply-laced Dynkin diagram. The Coxeter transformation is the main tool in the proof of the McKay correspondence, and is closely interrelated with the Cartan matrix and Poincaré series. The Coxeter functors constructed by Bernstein, Gelfand and Ponomarev plays a distinguished role in the representation theory of quivers. On these pages, the ideas and formulas due to J. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, H.S.M. Coxeter, V. Dlab and C.M. Ringel, V. Kac, J. McKay, T.A. Springer, B. Kostant, P. Slodowy, R. Steinberg, W. Ebeling and several other authors, as well as the author and his colleagues from Subbotin's seminar, are presented in detail. Several proofs seem to be new. 

Inhaltsverzeichnis

Preliminaries.- The Jordan normal form of the Coxeter transformation.- Eigenvalues, splitting formulas and diagrams Tp,q,r.- R. Steinberg's theorem, B. Kostant's construction.- The affine Coxeter transformation. 

Autoreninfo


1980 - 1991, CAM (Center of Automation and Metrology), Academy of Sciences of Moldova, Project leader of experimental data processing.
Research and development of programs and mathematical tools for Academy of Sciences of Moldova,

999 - 2007, ECI Telecom (Electronics Corporation of Israel), Israel, Project leader in the Network Management department.
Research and development of algorithmes in the field of Communications and Big Systems. 

Mehr vom Verlag:

k.A.

Mehr aus der Reihe:

Mehr vom Autor:

Stekolshchik, Rafael

Produktdetails

Medium: Buch
Format: Gebunden
Seiten: 260
Sprache: Englisch
Erschienen: Februar 2008
Auflage: 2008
Maße: 241 x 160 mm
Gewicht: 559 g
ISBN-10: 3540773983
ISBN-13: 9783540773986
Verlagsbestell-Nr.: 12207404

Bestell-Nr.: 3974928 
Libri-Verkaufsrang (LVR):
Libri-Relevanz: 0 (max 9.999)
Bestell-Nr. Verlag: 12207404

Ist ein Paket? 0
Rohertrag: 23,00 €
Porto: 2,75 €
Deckungsbeitrag: 20,25 €

LIBRI: 2675692
LIBRI-EK*: 76.99 € (23%)
LIBRI-VK: 106,99 €
Libri-STOCK: 0
LIBRI: 097 Print on Demand. Lieferbar innerhalb von 7 bis 10 Tagen * EK = ohne MwSt.

UVP: 2 
Warengruppe: 16240 

KNO: 22640831
KNO-EK*: 60.66 € (25%)
KNO-VK: 106,99 €
KNO-STOCK: 0
KNO-MS: 97

KNO-SAMMLUNG: Springer Monographs in Mathematics
P_ABB: 28 schw.-w. Abb., 28 schw.-w. Zeichn., 38 schw.-w. Tabellen
KNOABBVERMERK: 2008. xx, 240 S. XX, 240 p. 28 illus. 235 mm
Einband: Gebunden
Auflage: 2008
Sprache: Englisch
Beilage(n): HC runder Rücken kaschiert

Alle Preise inkl. MwSt. , innerhalb Deutschlands liefern wir immer versandkostenfrei . Informationen zum Versand ins Ausland .

Kostenloser Versand *

innerhalb eines Werktages

OHNE RISIKO

30 Tage Rückgaberecht

Käuferschutz

mit Geld-Zurück-Garantie