PORTO-
FREI

Using Algebraic Geometry

von Cox, David A / Little, John / O'Shea, Donal   (Autor)

In recent years, the discovery of new algorithms for dealing with polynomial equations, coupled with their implementation on fast inexpensive computers, has sparked a minor revolution in the study and practice of algebraic geometry. These algorithmic methods have also given rise to some exciting new applications of algebraic geometry. This book illustrates the many uses of algebraic geometry, highlighting some of the more recent applications of Gröbner bases and resultants. The book is written for nonspecialists and for readers with a diverse range of backgrounds. It assumes knowledge of the material covered in a standard undergraduate course in abstract algebra, and it would help to have some previous exposure to Gröbner bases. The book does not assume the reader is familiar with more advanced concepts such as modules. For the new edition, the authors have added a unified discussion of how matrices can be used to specify monomial orders; a revised presentation of the Mora normal form algorithm; two sections discussing the Gröbner fan of an ideal and the Gröbner Walk basis conversion algorithm; and a new chapter on the theory of order domains, associated codes, and the Berlekamp-Massey-Sakata decoding algorithm. They have also updated the references, improved some of the proofs, and corrected typographical errors. David Cox is Professor of Mathematics at Amherst College. John Little is Professor of Mathematics at College of the Holy Cross. Dona l O'Shea is the Elizabeth T. Kennan Professor of Mathematics and Dean of Faculty at Mt. Holyoke College. These authors also co-wrote the immensely successful book, Ideals, Varieties, and Algorithms.

Buch (Kartoniert)

EUR 84,00

Alle Preisangaben inkl. MwSt.

Auch verfügbar als:

  Lieferzeit ca. 2 bis 4 Wochen
(Besorgungstitel, verlagsbedingte Lieferzeit ca. 2 bis 4 Wochen)

Versandkostenfrei*

Dieser Artikel kann nicht bestellt werden.
 

Produktbeschreibung

In recent years, the discovery of new algorithms for dealing with polynomial equations, coupled with their implementation on fast inexpensive computers, has sparked a minor revolution in the study and practice of algebraic geometry. These algorithmic methods have also given rise to some exciting new applications of algebraic geometry. This book illustrates the many uses of algebraic geometry, highlighting some of the more recent applications of Gröbner bases and resultants.

The book is written for nonspecialists and for readers with a diverse range of backgrounds. It assumes knowledge of the material covered in a standard undergraduate course in abstract algebra, and it would help to have some previous exposure to Gröbner bases. The book does not assume the reader is familiar with more advanced concepts such as modules.

For the new edition, the authors have added a unified discussion of how matrices can be used to specify monomial orders; a revised presentation of the Mora normal form algorithm; two sections discussing the Gröbner fan of an ideal and the Gröbner Walk basis conversion algorithm; and a new chapter on the theory of order domains, associated codes, and the Berlekamp-Massey-Sakata decoding algorithm. They have also updated the references, improved some of the proofs, and corrected typographical errors.

David Cox is Professor of Mathematics at Amherst College. John Little is Professor of Mathematics at College of the Holy Cross. Dona

l O'Shea is the Elizabeth T. Kennan Professor of Mathematics and Dean of Faculty at Mt. Holyoke College. These authors also co-wrote the immensely successful book, Ideals, Varieties, and Algorithms. 

Inhaltsverzeichnis

Solving Polynomial Equations.- Resultants.- Computation in Local Rings.- Modules.- Free Resolutions.- Polytopes, Resultants, and Equations.- Polyhedral Regions and Polynomials.- Algebraic Coding Theory.- The Berlekamp-Massey-Sakata Decoding Algorithm. 

Autoreninfo

Donal O Shea, geboren 1952, ist Professor für Mathematik am Mount Holyoke College in Massachusetts. Für seine mathematischen Arbeiten zur Theorie der Singularitäten ist er international bekannt geworden. Er hat zahlreiche Forschungsbeiträge veröffentlicht und übersetzt aus dem Russischen und Französischen. 

Mehr vom Verlag:

k.A.

Mehr aus der Reihe:

Produktdetails

Medium: Buch
Format: Kartoniert
Seiten: 575
Sprache: Englisch
Erschienen: März 2005
Auflage: 2nd 2005 edition
Maße: 238 x 159 mm
Gewicht: 830 g
ISBN-10: 0387207333
ISBN-13: 9780387207339

Bestell-Nr.: 770112 
Libri-Verkaufsrang (LVR):
Libri-Relevanz: 0 (max 9.999)
 

Ist ein Paket? 0
Rohertrag: 3,92 €
Porto: 2,75 €
Deckungsbeitrag: 1,17 €

LIBRI: 7890320
LIBRI-EK*: 74.58 € (5%)
LIBRI-VK: 84,00 €
Libri-STOCK: 0
LIBRI: 018 Besorgungstitel * EK = ohne MwSt.
P_SALEALLOWED: WORLD
DRM: 0
0 = Kein Kopierschutz
1 = PDF Wasserzeichen
2 = DRM Adobe
3 = DRM WMA (Windows Media Audio)
4 = MP3 Wasserzeichen
6 = EPUB Wasserzeichen

UVP: 2 
Warengruppe: 16250 

KNO: 07716434
KNO-EK*: 30.71 € (25%)
KNO-VK: 80,24 €
KNO-STOCK: 0
KNO-MS: 18

KNO-SAMMLUNG: Graduate Texts in Mathematics Vol.185
P_ABB: 24 Abb.
KNOABBVERMERK: 2nd ed. 2005. xii, 575 S. XII, 575 p. 235 mm
Einband: Kartoniert
Auflage: 2nd 2005 edition
Sprache: Englisch

Alle Preise inkl. MwSt. , innerhalb Deutschlands liefern wir immer versandkostenfrei . Informationen zum Versand ins Ausland .

Kostenloser Versand *

innerhalb eines Werktages

OHNE RISIKO

30 Tage Rückgaberecht

Käuferschutz

mit Geld-Zurück-Garantie