PORTO-
FREI

Classical Theory of Algebraic Numbers

von Ribenboim, Paulo   (Autor)

Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem. These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others. This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography. This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples. The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields. Part One is devoted to residue classes and quadratic residues. In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, inertia and ramification of ideals. Part Three is devoted to Kummer's theory of cyclomatic fields, and includes Bernoulli numbers and the proof of Fermat's Last Theorem for regular prime exponents. Finally, in Part Four, the emphasis is on analytical methods and it includes Dinchlet's Theorem on primes in arithmetic progressions, the theorem of Chebotarev and class number formulas. A careful study of this book will provide a solid background to the learning of more recent topics.

Buch (Gebunden)

EUR 117,69

Alle Preisangaben inkl. MwSt.

Auch verfügbar als:

  Verlagsbedingte Lieferzeit ca. 3 - 6 Werktage.
(Print on Demand. Lieferbar innerhalb von 3 bis 6 Tagen)

Versandkostenfrei*

Dieser Artikel kann nicht bestellt werden.
 

Produktbeschreibung

Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem. These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others. This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography. This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples. The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields. Part One is devoted to residue classes and quadratic residues. In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, inertia and ramification of ideals. Part Three is devoted to Kummer's theory of cyclomatic fields, and includes Bernoulli numbers and the proof of Fermat's Last Theorem for regular prime exponents. Finally, in Part Four, the emphasis is on analytical methods and it includes Dinchlet's Theorem on primes in arithmetic progressions, the theorem of Chebotarev and class number formulas. A careful study of this book will provide a solid background to the learning of more recent topics. 

Inhaltsverzeichnis

Unique Factorization Domains, Ideals, and Principal Ideal Domains.- Commutative Fields.- One.- Residue Classes.- Quadratic Residues.- Two.- Algebraic Integers.- Integral Basis, Discriminant.- The Decomposition of Ideals.- The Norm and Classes of Ideals.- Estimates for the Discriminant.- Units.- Extension of Ideals.- Algebraic Interlude.- The Relative Trace, Norm, Discriminant, and Different.- The Decomposition of Prime Ideals in Galois Extensions.- The Fundamental Theorem of Abelian Extensions.- Complements and Miscellaneous Numerical Examples.- Three.- Local Methods for Cyclotomic Fields.- Bernoulli Numbers.- Fermat's Last Theorem for Regular Prime Exponents.- More on Cyclotomic Extensions.- Four.- Characters and Gaussian Sums.- Zeta-Functions and L-Series.- The Dedekind Zeta-Function.- Primes in Arithmetic Progressions.- The Frobenius Automorphism and the Splitting of Prime Ideals.- Class Numbers of Quadratic Fields.- Class Number of Cyclotomic Fields.- Miscellaneous Results About the Class Number of Quadratic Fields.- Miscellaneous Results About the Class Number of Cyclotomic Fields. 

Autoreninfo

Paulo Ribenboim ist emeritierter Professor der kanadischen Queen's University, Fellow der Royal Society of Canada und Träger des George P¢lya-Preises der Mathematical Association of America. Er ist Autor von 13 Büchern und über 150 Forschungsartikeln. 

Mehr vom Verlag:

k.A.

Mehr aus der Reihe:

Mehr vom Autor:

Ribenboim, Paulo

Produktdetails

Medium: Buch
Format: Gebunden
Seiten: 712
Sprache: Englisch
Erschienen: März 2001
Auflage: Second Edition 2001
Maße: 240 x 161 mm
Gewicht: 1221 g
ISBN-10: 0387950702
ISBN-13: 9780387950709

Bestell-Nr.: 855487 
Libri-Verkaufsrang (LVR):
Libri-Relevanz: 0 (max 9.999)
 

Ist ein Paket? 1
Rohertrag: 27,50 €
Porto: 3,35 €
Deckungsbeitrag: 24,15 €

LIBRI: 5422590
LIBRI-EK*: 82.49 € (25%)
LIBRI-VK: 117,69 €
Libri-STOCK: 0
LIBRI: 097 Print on Demand. Lieferbar innerhalb von 7 bis 10 Tagen * EK = ohne MwSt.

UVP: 2 
Warengruppe: 16240 

KNO: 14867182
KNO-EK*: 52.46 € (25%)
KNO-VK: 106,99 €
KNO-STOCK: 0
KNO-MS: 18

KNO-SAMMLUNG: Universitext
P_ABB: 9 Abb.
KNOABBVERMERK: 2nd ed. 2001. xxiv, 682 S. XXIV, 682 p. 234 mm
Einband: Gebunden
Auflage: Second Edition 2001
Sprache: Englisch
Beilage(n): HC runder Rücken kaschiert

Im Themenkatalog stöbern

› Start › English Books

Entdecken Sie mehr

Alle Preise inkl. MwSt. , innerhalb Deutschlands liefern wir immer versandkostenfrei . Informationen zum Versand ins Ausland .

Kostenloser Versand *

innerhalb eines Werktages

OHNE RISIKO

30 Tage Rückgaberecht

Käuferschutz

mit Geld-Zurück-Garantie